

Contents

	libfuncpy
	Motivation

	Installation

	Usage

	Contributing
	Fork this repository

	Install for developers

	Make a new branch

	Uniformed Tests with tox

	libfuncpy API

	Changelog
	v0.0.4 (2021-07-19)

	v0.0.3 (2021-06-29)

	v0.0.2 (2021-06-29)

	v0.0.1 (2021-06-29)

	v0.0.0 (2021-06-29)

	Authors

Indices and tables

	Index

	Module Index

	Search Page

libfuncpy

[image: Test Status]
 [https://github.com/joaomcteixeira/libfuncpy/actions?workflow=tests][image: Package Build]
 [https://github.com/joaomcteixeira/libfuncpy/actions?workflow=build][image: Codecov]
 [https://codecov.io/gh/joaomcteixeira/libfuncpy][image: Maintainability]
 [https://codeclimate.com/github/joaomcteixeira/libfuncpy/maintainability][image: Documentation Status]
 [https://libfuncpy.readthedocs.io/en/latest/?badge=latest][image: PyPI - Python Version]
 [https://pypi.org/project/libfuncpy/][image: PyPI]
 [https://pypi.org/project/libfuncpy/]
Motivation

Functional Programming tools in Python - extending beyond map, filter,
reduce, and partial.

Installation

Install libfuncpy from PyPI with:

pip install libfuncpy

Install it from GitHub with:

clone the repository
git clone https://github.com/joaomcteixeira/libfuncpy

move to the folder
cd libfuncpy

install in develop mode
python setup.py develop

Usage

This is an example page for a real project. Describe here examples
on how to use your software!

To use libfuncpy:

import libfuncpy

 Here we explain how to contribute to a project that adopted this template. Actually, you can use this same scheme when contributing to this template. If you are completely new to git this might not be the best beginner tutorial, but will be very good still ;-)

You will notice that the text that appears is a mirror of the CONTRIBUTING.rst file. You can also point your community to that file (or the docs) to guide them in the steps required to interact with you project.

Contributing

How to contribute to this project.

Fork this repository

Fork this repository before contributing [https://github.com/joaomcteixeira/libfuncpy/network/members].

Clone your fork

Next, clone your fork to your local machine, keep it up to date with
the upstream [https://gist.github.com/CristinaSolana/1885435], and update the online fork with those updates.

git clone https://github.com/YOUR-USERNAME/libfuncpy.git
cd libfuncpy
git remote add upstream git://github.com/joaomcteixeira/libfuncpy.git
git fetch upstream
git merge upstream/main
git pull origin main

Install for developers

Create a dedicated Python environment where to develop the project.

If you are using pip follow the official instructions on
Installing packages using pip and virtual environments [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment], most likely
what you want is:

python3 -m venv libfuncpy
source libfuncpy/bin/activate

If you are using Anaconda [https://www.anaconda.com/] go for:

conda create --name libfuncpy python=3.7
conda activate libfuncpy

Where libfuncpy is the name you wish to give to the environment
dedicated to this project.

Either under pip or conda, install the package in develop
mode, and also tox. Note, here I
assume our project has no dependencies.

python setup.py develop
pip install tox

This configuration, together with the use of the src folder layer,
guarantee that you will always run the code after installation. Also,
thanks to the develop flag, any changes in the code will be
automatically reflected in the installed version.

Make a new branch

From the main branch create a new branch where to develop the new code.

git checkout main
git checkout -b new_branch

Develop the feature and keep regular pushes to your fork with
comprehensible commit messages.

git status
git add (the files you want)
git commit -m (add a nice commit message)
git push origin new_branch

While you are developing, you can execute tox as needed to run your
unittests or inspect lint, etc. See the last section of this page.

Update CHANGELOG

Update the changelog file under docs/CHANGELOG.rst with an
explanatory bullet list of your contribution. Add that list right after
the main title and before the last version subtitle:

Changelog
=========

* here goes my new additions
* explain them shortly and well

vX.X.X (1900-01-01)

Also add your name to the authors list at docs/AUTHORS.rst.

Pull Request

Once you are finished, you can Pull Request you additions to the main
repository, and engage with the community. Please read the
PULLREQUEST.rst guidelines first, you will see them when you open a
PR.

Before submitting a Pull Request, verify your development branch
passes all tests as described bellow
. If you are developing new code you should also implement new test
cases.

Uniformed Tests with tox

Thanks to Tox [https://tox.readthedocs.io/en/latest/] we can have a unified testing platform where all
developers are forced to follow the same rules and, above all, all tests
occur in a controlled Python environment.

With Tox, the testing setup can be defined in a configuration file,
the tox.ini [https://github.com/joaomcteixeira/libfuncpy/blob/latest/tox.ini], which contains all the operations that are performed
during the test phase. Therefore, to run the unified test suite,
developers just need to execute tox, provided tox is installed [https://tox.readthedocs.io/en/latest/install.html] in
the Python environment in use.

pip install tox
or
conda install tox -c conda-forge

Before creating a Pull Request from your branch, certify that all the
tests pass correctly by running:

tox

These are exactly the same tests that will be performed online in the
Github Actions.

Also, you can run individual environments if you wish to test only
specific functionalities, for example:

tox -e lint # code style
tox -e build # packaging
tox -e docs # only builds the documentation
tox -e prreqs # special requirements before Pull Request
tox -e py37 # performs pytest in Python 3.7 environment (it should
be installed)

libfuncpy API

Contain functions.

	
libfuncpy.lib.ITE(iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should be preconfigured and accept no arguments.

Better if you see the code:

return iflogic() if assertion() else elselogic()

	
libfuncpy.lib.ITEX(x, iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should receive a single value: x.

Better if you see the code:

return iflogic(x) if assertion(x) else elselogic(x)

	Parameters

	x – The value to pass to each function.

	
libfuncpy.lib.chainf(init, *funcs)

	Run functions in sequence starting from an initial value.

Example

>>> chainf(2, [str, int, float])
2.0

	
libfuncpy.lib.chainfs(*funcs)

	Store functions be executed on a value.

Example

>>> do = chainfs(str, int, float)
>>> do(2)
2.0

	
libfuncpy.lib.consume(gen)

	Consume generator in a single statement.

Example

>>> consume(generator)

	
libfuncpy.lib.context_engine(func, exceptions, doerror, doelse, dofinally, *args, **kwargs)

	Make a context engine.

	
libfuncpy.lib.f1f2(f1, f2, *a, **k)

	Apply one function after the other.

Call f1 on the return value of f2.

Args and kwargs apply to f2.

Example

>>> f1f2(str, int, 2)
"2"

	
libfuncpy.lib.f2f1(f1, f2, *a, **k)

	Apply the second function after the first.

Call f2 on the return value of f1.

Args and kwargs apply to f1.

Example

>>> f2f1(str, int, 2)
2

	
libfuncpy.lib.flatlist(list_)

	Flat a list recursively.

This is a generator.

	
libfuncpy.lib.give(value)

	Preare a function to return a value when called.

Ignore *args and **kwargs.

Example

>>> true = give(True)
>>> true()
True

>>> five = give(5)
>>> five(4, 6, 7, 8, some_args='some string')
5

	
libfuncpy.lib.if_elif_else(value, condition_function_pair)

	Apply logic if condition is True.

	Parameters

	
	value (anything) – The initial value

	condition_function_pair (tuple) – First element is the assertion function, second element is the
logic function to execute if assertion is true.

	Returns

	The result of the first function for which assertion is true.

	
libfuncpy.lib.ite(iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should be preconfigured and accept no arguments.

Better if you see the code:

return iflogic() if assertion() else elselogic()

	
libfuncpy.lib.itev(x, iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should receive a single value: x.

Better if you see the code:

return iflogic(x) if assertion(x) else elselogic(x)

	Parameters

	x – The value to pass to each function.

	
libfuncpy.lib.make_iterable(value)

	Transform into an iterable.

Transforms a given value into an iterable if it is not.
Else, return the value itself.

Example

>>> make_iterable(1)
[1]

>>> make_iterable([1])
[1]

	
libfuncpy.lib.mapc(f, *iterables)

	Consume map function.

Like map() but it is not a generator; map is consumed
immediately.

	
libfuncpy.lib.pass_(value)

	Do nothing, just pass the value.

Example

>>> pass_(1)
1

	
libfuncpy.lib.raise_(exception, *ignore, **everything)

	Raise exception.

	
libfuncpy.lib.reduce_helper(value, f, *a, **k)

	Help in reduce.

Helper function when applying reduce to a list of functions.

	Parameters

	
	value (anything)

	f (callable) – The function to call. This function receives value as first
positional argument.

	*a, **k – Args and kwargs passed to f.

	
libfuncpy.lib.ternary_operator(iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should be preconfigured and accept no arguments.

Better if you see the code:

return iflogic() if assertion() else elselogic()

	
libfuncpy.lib.ternary_operator_v(x, iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should receive a single value: x.

Better if you see the code:

return iflogic(x) if assertion(x) else elselogic(x)

	Parameters

	x – The value to pass to each function.

	
libfuncpy.lib.ternary_operator_x(x, iflogic, assertion, elselogic)

	Apply ternary operator logic executing functions.

Functions should receive a single value: x.

Better if you see the code:

return iflogic(x) if assertion(x) else elselogic(x)

	Parameters

	x – The value to pass to each function.

	
libfuncpy.lib.vartial(func, *args, **keywords)

	Prepare a function with args and kwargs except for the first arg.

Functions like functools.partial except that the resulting
preprepared function expects the first positional argument.

Example

>>> pow2 = vartial(math.pow, 2)
>>> pow2(3)
9
>>> pow2(4)
16

This is different from:
>>> pow_base_3 = partial(math.pow, 3)
>>> pow_base_3(2)
9
>>> pow_base_3(4)
81

	
libfuncpy.lib.whileloop(cond, func, do_stopiteration=<function give.<locals>.newfunc>, do_exhaust=<function give.<locals>.newfunc>)

	Execute while loop.

All function accept no arguments. If state needs to be evaluated,
cond and func need to be synchronized.

	Parameters

	
	cond (callable) – The while loop condition.

	func (callable) – The function to call on each while loop iteration.

	do_stopiteration (callable) – The function to execute when func raises StopIteration error.

	do_exhaust (callable) – The function to execute when while loop exhausts.

	Returns

	None

Changelog

v0.0.4 (2021-07-19)

	Add docstrings

	add mapc

	add new names and list of deprecates

	disable isort checks

v0.0.3 (2021-06-29)

	implemented make_iterable

v0.0.2 (2021-06-29)

	corrected git actions

v0.0.1 (2021-06-29)

	PyPI badges

v0.0.0 (2021-06-29)

	Initial library commit

Authors

	Joao M. C. Teixeira (webpage [https://bit.ly/joaomcteixeira], github [https://github.com/joaomcteixeira])

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 libfuncpy	

 	
 	
 libfuncpy.lib	

Index

 C
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | T
 | V
 | W

C

 	
 	chainf() (in module libfuncpy.lib)

 	chainfs() (in module libfuncpy.lib)

 	
 	consume() (in module libfuncpy.lib)

 	context_engine() (in module libfuncpy.lib)

F

 	
 	f1f2() (in module libfuncpy.lib)

 	
 	f2f1() (in module libfuncpy.lib)

 	flatlist() (in module libfuncpy.lib)

G

 	
 	give() (in module libfuncpy.lib)

I

 	
 	if_elif_else() (in module libfuncpy.lib)

 	ITE() (in module libfuncpy.lib)

 	
 	ite() (in module libfuncpy.lib)

 	itev() (in module libfuncpy.lib)

 	ITEX() (in module libfuncpy.lib)

L

 	
 	
 libfuncpy.lib

 	module

M

 	
 	make_iterable() (in module libfuncpy.lib)

 	mapc() (in module libfuncpy.lib)

 	
 	
 module

 	libfuncpy.lib

P

 	
 	pass_() (in module libfuncpy.lib)

R

 	
 	raise_() (in module libfuncpy.lib)

 	
 	reduce_helper() (in module libfuncpy.lib)

T

 	
 	ternary_operator() (in module libfuncpy.lib)

 	
 	ternary_operator_v() (in module libfuncpy.lib)

 	ternary_operator_x() (in module libfuncpy.lib)

V

 	
 	vartial() (in module libfuncpy.lib)

W

 	
 	whileloop() (in module libfuncpy.lib)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 libfuncpy

 		
 Motivation

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Fork this repository

 		
 Clone your fork

 		
 Install for developers

 		
 Make a new branch

 		
 Update CHANGELOG

 		
 Pull Request

 		
 Uniformed Tests with tox

 		
 libfuncpy API

 		
 Changelog

 		
 v0.0.4 (2021-07-19)

 		
 v0.0.3 (2021-06-29)

 		
 v0.0.2 (2021-06-29)

 		
 v0.0.1 (2021-06-29)

 		
 v0.0.0 (2021-06-29)

 		
 Authors

